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The theory of wave propagation in a liquid with gas bubbles based on the equations of 
[I-3] has been worked out mainly for the case of monodispersed bubbles (bubbles of only one 
size exist at each point in space). Reviews of the results can be found in [4-6]. Fewer 
papers have been devoted to liquids with a distribution of bubble sizes. As a rule, these 
papers asstvne a discrete size distribution function for the bubbles (mixture of bubbles with 
a finite number of fractions) [7-13]. The case of a continuous size distribution function 
for the bubbles was considered qualitatively in [14-18]. An asymptotic solution of the 
Cauchy problem for the linearized equations of motion of a liquid with a continuous spectrum 
of bubbles was constructed in [19]. In particular, it was shown that a monochromatic wave 
with frequency equal to one of the natural frequencies of the bubbles cannot propagate in 
the liquid. The wave splits up into a sum of two monochromatic waves (low and high-frequency 
components) or is transformed into a high-frequency wave, depending on whether the wavelength 
of the incident wave is sufficiently large or small. The present paper is a continuation of 
[19]. For completeness we rederive the integrodifferential equation given in [19]. This 
equation is then used to study the time evolution of a signal propagating in a medium which 
is initially at rest. 

i. Equations of Motion. The nonlinear equations of motion of a liquid with bubbles 
have the form [i-3, 14, 18] 

do du Vp ~ O, d a 
d--7-~ -~-pdivu=O'  ~ - + - - p  dt --Ot ~-u.V, 

dt'- + -~ \--~ / PlZ ( 1.1 ) 

d N / d t - f - N d i v u = O ,  p = p ~ ( t - - % ) ,  p~po+C~o(p~_plo) ,  
o~ 

~ 2 = ~ - ~  N (~, t, x) /?3 (~, t, x) d~. 
0 

Here t is the time; x~is the spatial coordinate; p(t, x) is the density of the mixture pz(t, x) 
is the density of the liquid; u(t, x): is the velocity of the mixture; $ is the radius of a 
bubble of "fraction ~" in equilibrium ($ lies within [gl, $2], 0 < $i < $2 < ~ and plays 
the role of a Lagrangian variable determining the corresponding fraction of bubbles); R(~, 
t, x:) is the bubble radius; p(t, x) is the pressure of the mixture, which is assumed to be 
equal to the pressure of the liquid; cl0 ~ is the speed of sound in the liquid; N(~. t, x) is 
the size distribution function of the bubbles, defined such that dn =N(~, t, x)d~ is the number 
of bubbles of fraction $ per unit volume of the mixture; e2( t, x) is the volume concentration 
of bubbles. A zero subscript corresponds to the state of rest. 

The system of equations (i.i) contains an infinite number of variables, characterized 
by the index $. Some of these variables depend only on t, x, while others depend on t, x, ~. 
If N----N.(t, x)6(~- ~.):, where 6 is the delta function and ~, is a constant bubble radius, 
then (I. i) reduces to the equation of motion of a monodispersed mixture. 

The equation of continuity and the conservation of number density of the bubbles give 
the relation 

~- -~ = o. ( 1 . 2 )  

Assuming that at t = 0 the distribution of bubbles is independent of x, we obtain from (1.2) 
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4 
N/p=No(g) /po ,  P o = P t o  i - - - ~ g  No(~)~ad~ , 

0 

(~.3) 

where N0(S) is the distribution of bubbles in equilibrium. 
finite on [0, ~) and its argument is inside I = [~, $~]. 
of N0(~), the density of the mixture is given by 

It is assumed that N 0(~) is 
Solving (1.3) for N(~, t, x) in terms 

P = Pt 
Pz 

l - - ~ o - ~  ~t No(~)Ra(~ , t , x )d~  - } - O ( a ~ ) .  (1.4) 
0 

Let ~i be a small parameter. 
form of the solution 

P = Po + e~p' ,  u = e~u', R = ~ § e~R' ,  9~ = Pzo + e~P~/C~. 

after discarding terms of order ~ and ~ and eliminating the velocity u', we obtain 

- -2  t ~ 2 �9 
cl P~t -- A p '  = 4~pzo ~ N O (~) ~ Rud~, 

0 

t 1 

~Rn + o)~ (~) ~R' = -- p/Plo, o)2 (~) = • • = 37Po/Pzo" 

Linearizing (I.I) with the use of (1.4) and the following 

(1.5) 

Here 5 is the Laplacian in x; cf = cz0(i @ a20 ) Js the "frozen" speed of sound; ~20 is the volume 
concentration of bubbles in equilibrium; ~(~) is the natural frequency of vibration of bubbles 
of type ~. The system of equations (1.5) is practically the same as in [15], but cf takes the 
place of Q0-] It is obviously more correct in this approximation to assume that the speed of 
sound in the pure liquid is equal to the frozen speed of sound. Nevertheless, below we use 
the traditional notation cf. Omitting the primes and performing the substitution A = $R, we 
finally obtain 

c72pu - -  Ap = 499l  o y N o (~) ~Aud~, Au + o)2 (~)A = - -  P/Pzo. ( 1 . 6 )  
0 

Below we consider the one-dimensional case for simplicity. The initial and boundary condi- 
tions for (1.6) for the case of a signal propagating in a liquid at rest can be written in 
the form 

P!t=o = Pt[t=o = O, AIt=o = A&=o = 0, x > 0 ,  
Pl~=o = &(t), t > 0 .  ( 1 . 7 )  

2. Reduction to a Single Equation. We transform from $ to ~: 

ct Pt~ -- p =  = 4ztplo• ~tttdo) , 
o ( 2 . 1 )  

"~tt -~ o)2~ = --P/Plo, • = 3?po/Pto" 

Here N0(o)) = N0(• ~(o), t, x) = A(• t, x). The function N0(m) vanishes outside the interval 
J = [0az, m2] we h a v e  ml = • o)~ = •  F r o m  t h e  s e c o n d  e q u a t i o n  o f  ( 2 . 1 )  i t  f o l l o w s  t h a t  

O~o t~ p (~ ,  x) s in  (o (t - -  ~ )dz .  ( 2 . 2 )  
0 

Substituting (2.2) into the first equation of (2.1), we finally have 

t 

c72ptt ~ P~x @ ra2P = ~ K (t - -  ~c) p (% x) dT, ( 2 .3  ) 
0 

where 

m2= do), K ( t - - T ) =  7 s m o ) ( t - - T ) d o ) ,  
0 0 

N(o)) = 4n• • = 3?po/Pzo- 

(2.4) 
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Equations (2.3) and (2.4), with the initial conditions (1.7), are the basis for further 
analysis. The presence of the convolution operator on the right-hand side of (2.3) shows that 
a liquid with bubbles is a medium with memory. An equation of the type (2.3) was obtained in 
[20] in the monodispersed case. 

3. Propagation of a Signal. We consider the Laplace transform 

P(s, x)= S p(t, x)e-~tdt, M (s) = S it(t)e-~tdt' s= (~ + iq. 
0 0 

Then ( 2 . 3 )  w i t h  t h e  i n i t i a l  and bounda ry  c o n d i t i o n s  ( 1 . 7 )  r e d u c e s  t o  t h e  f o l l o w i n g  b ounda ry -  
value problem 

P = - - L ( s )  P = O ,  x > 0 ,  P [ ~ = o = M ( s ) ,  P , O, 
~--)oo 

(3.1) 
L ( s ) = s  ~ c7 ~+ j ( o  ~+ ~) . 

0 

Assume that ~(t) is integrable, it follows that M(s) has no singularities in the right half 
plane. We assume that N(m) obeys the conditions: 

A. The function N(m) is sufficiently smooth and vanishes identically outside the inter- 
val J = [m I, m2]; N(~) > 0 inside J; N(~ i) = 0, N'(~ i) = 0, i = I, 2, 0 < ~i < ~2 < 

N ( o )  do  t 
B. c 7  2 + ~%+0~lim j ( ~ _ ~ ? ) ~ . u .  S i n c e  c~ 2 i s  a s m a l l  q u a n t i t y ,  c o n d i t i o n  B w i l l  be s a t i s -  

f i e d  for reasonable distribution functions N(~). 

It follows from condition A that the function L(s) in (3.1) is analytic in the complex s 
plan__e except on the segments [-iw 2, -iml], [iml, iw 2] along the imaginary axis. The quantity 
/L(s) is understood to be the branch of the square root function which is positive if the 
radicand is positive. Then the solution of (3.1) has the form 

P = M(s) exp (-- ]/rL(s)x). ( 3 . 2 )  

The f u n c t i o n  L ( s )  has  t h r e e  z e r o s ,  one o f  which  (s  = 0) i s  a d o u b l e  r o o t  w h i l e  t h e  o t h e r  two 
s i m p l e  r o o t s  s k a r e  p u r e l y  i m a g i n a r y  and complex  c o n j u g a t e s .  Hence 

- [ N (o) do 

In  v iew of  c o n d i t i o n  B on t h e  f u n c t i o n  N(m) we have  m2 < w, < ~. The p o i n t s  •  a r e  b r a n c h -  
ing  p o i n t s  o f  t h e  f u n c t i o n  / L ( s ) .  We c o n s i d e r  t h e  c u t s  on t h e  complex p l a n e  shown in  F ig .  1. 
Using t h e  i n v e r s i o n  f o r m u l a  f o r  t h e  L a p l a c e  t r a n s f o r m ,  we f i n d  from ( 3 . 2 )  

~ + i b  

i lim ~ M(s)exp( s t - ~ f - ~ ) x ) d s '  ~>0.  ( 3 . 3 )  
p (t, x) = - ~  b ~  o ~  

We consider the ray x/t = c in the (t, x) plane. Our next objective is to obtain the asymptotic 
form of the solution p(t, x) defined by (3.3) along this ray for large t. We show first that 
disturbances cannot propagate with a velocity larger than cf, i.e., in the region x/t > cf 
the solution of (2.3) is trivial. Indeed, for large Re(s) = o and fixed t we have 

o +'ib 

, ; (+)} p ( t , x ) = ~ l i m  M(s) exp 1-- c st-{-O ds. 
b~oo , 

q - - ib  

We close the segment [o - ib, o + ib] by a circle C b and denote the enclosed region as D b and 
its boundary as 3D b (see Fig. i). Then from Jordan's lemma [21] 

p(t ,x)= ~t b-~~ ~ 3l(s) exPi(t--c~)st +O(+)}ds. 

Because the integrand is analytic, the pressure p(t, x) - 0 when c > cf. This result is com- 
pletely analogous to the result obtained in [22, Chap. i0]. 
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Fig. 1 Fig. 2 

Suppose now that c < cf. In the inversion formula (3.3) we put o = 0. Since the ex- 
pression for L(s) involves an integral of the Cauchy type, at points belonging to the segments 
[-im2, -i~], [iml, i~2] it is necessary to calculate the limit of L(s) as s approaches the 
imaginary axis from the right.+ Let L-(s) be this limiting value. Suppose that s = 6 + i~, 
where 6 > 0 and ~ is an arbitrary interior point of the interval [ml, m2] [if ~ is equal to 
m k (k = I, 2) then L(s) has no singularities when s § imk, since N(m k) = 0]. Then 

- N ((o) d(o - 7 -  - -  n~ do  ~- a32i------~ (o -[- n - -  i6 o) - -  ~ ~- i5 " L ( s ) = s  2 cs ~ +  (o~(~2+ 3) =s2 c7 ~ +  (o2, 2 
~91 (01 -T" ( 0~1 @1 

The first two integrals do not have singularities when 6 § 0. The last integral can be 
evaluated explicitly. Indeed, 

Then 

Therefore 

0) 2 

Y '~ ' ('~176176 I ~ 1 7 6  co --  f~ -k i5 = "~ In  i arc tg  arctg  
% (% _ f~)2 + ~2 6 " 

~ 

( l i m  do) (o 2 - -  f~ 
~-+oJ ( o - - f ~ - t - i 5 - - l n  f~--(ol  

o) 1 

�9 (o3 ~3 N(~,) ( o 2 - ~  w2 - ' q  ~_ ( 3  4 )  L - ( s ) = - - . o 3  c s2+  _ j _ Q 2  do) + ~  in %+9- I n ~  in . 

The  a n a l o g o u s  f o r m u l a  c a n  b e  o b t a i n e d  w h e n  s - ~ - - i ~ - ~  O, ~ ~ [o)i, o)2]. 

I f  s ~ ( - - i o ) , ,  --io)2)@ (io)2, io),), t h e n  / L ( s )  > 0 a n d  t h e  c o n t r i b u t i o n  o f  t h e s e  s e g m e n t s  t o  
the asymptotic solution is exponentially small. Further, let s ~ (-- /o)  2, --io)~)[J(to)~, io)2). It 
follows from (3.4) that Re (/P-~ > 0. Hence the contribution of the continuous spectrum 
is also exponentially small. Hence it is sufficient to consider the following integral for 
large values of t 

i 
M (in) exp (icI) (c, ~l) t) dl l, p (c, t) = 

(3.5) 

( (  i "'"'" r ~I) = ~I -. ~' .7' + j(-j_~.)) 
0 

+In [19] the corresponding limits of the integrals of the Cauchy type were taken incorrectly 
(Lemma 4.2). This was pointed out to the author by K. V. Lotov. The correct result is ob- 
tained in analogy with the present paper and reduces to inserting the factor 1/2 into the 
formula for the jump of the integrals. This change does not affect the subsequent analysis 
or conclusions. 
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In (3.5) the integral is taken along the real axis minus the segments (--~,, --(01) U(~,, ~,). 
The integral (3.5) can be evaluated approximately using the method of stationary phase (see 
[22] for example). The stationary points of the phase of ~(c, ~) are found from the equation 

oo 

, ~ N ( o ) ) d o )  

i = s g n  (11) o , ( 3 . 6 )  
c _ . (* N ( o ) ) d a )  

0 

which is meaningful only when N > 0. This corresponds to the requirement that the solution 
should represent a wave traveling to the right. The relation (3.6) has a simple interpreta- 
tion: if D is a given frequency, then c is the group velocity (a more detailed discussion is 
given in [19]). The dispersion curve (the dependence of the wave number k on frequency D) 
constructed in [19] has the form shown in Fig. 2. The curves k(q) corresponding to the high 
and low-frequency branches of the dispersion relation increase monotonically and are convex. 
In addition 

lim d-~k =-J-t <oo l  limd~ k 1 limdk _.!_i 
~%--o d~] Ccr n~oa~ c e ' ~ a~ c!" 

In Fig.  2 the  s t r a i g h t  l i n e s  1-3 have s lopes  1/Ccr ,  1/Ce, 1 / c f ,  r e s p e c t i v e l y .  

The equilibrium speed of sound Cel = ~ c 7 2 ~ i N ( o ) ) d ~  ~5 is the maximum possible propagation 
�9 O 

velocity of low-frequency disturbances. The speed Ccr (in the monodispersed case it is equal 
to zero) is the minimum possible group velocity of low-frequency disturbances. If c ~ (0, 
Ccr) U (Ce, cf), then there exists a single stationary point of the phase ~ corrseponding to 
high-frequency waves. If c ~ [Ccr , c e] then there are two stationary points (one correspond- 
ing to low-frequency waves and the other to high-frequency waves). Since the dispersion curves 
are convex, the stationary points of the phase ~ are not inflection points, i.e., the second 
derivative of ~ with respect to D is nonzero at these points. Hence the solution p(t, x) 
falls off as t -I/2 along the ray x/t = c (see [22], for example). 

It is obvious physically that dissipation will lead to a rapid attenuation of high- 
frequency disturbances. Hence an obserVer moving with velocity c outside the interval (Ccr , 
Ce) moves practically with respect to the state of rest at large t. Most of the disturbance 
is localized inside the sector formed by rays with slopes Ccr and c e. 
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SEDIMENT TRANSPORT BY TURBULENT FLOW ABOVE A BOTTOM SUBJECT TO EROSION 

A. G. Petrov and P. G. Petrov UDC 532. 543 

The theory of the motion of suspended particles in a turbulent flow at low concentra- 
tion is presented in [I, 2]. In [3] it is proposed that Coulombic dry friction between the 
solid particles moving in the liquid be taken into account. In [4-7] the motion of a mixture 
of a liquid and solid particles is investigated with the help of a rheological relation in 
the form of a combination of dry friction for the solid phase and viscous friction for the 
liquid phase. In [4] one-dimensional turbulent flow above an even bottom is considered. In 
[5-7] the motion is studied in a general formulation with an arbitrary bottom relief and an 
expression is derived for the sediment flow rate. In [4-7] the particle concentration in 
the layer of sediment at the bottom is assumed to be constant. 

In the present paper we propose, on the basis of the results enumerated above, a model 
of the medium which gives a continuous description of the motion of the mixture over the en- 
tire thickness of the flow, starting from the eroding bottom surface with the limiting par- 
ticle concentration. Far from the bottom surface, where the concentration is low, theequa- 
tions convert into the equations of motion derived in [I, 2] for suspended particles in a 
turbulent flow. The main result is an analytic expression for the sediment flow rate in a 
turbulent flow for the general three-dimensional problem. The theory does not require the 
introduction of unknown empirical parameters. 

i. Assumptions. We consider the turbulent flow of a heavy incompressible liquid with 
solid particles in the region $(x, y) < z < q, where x, y, and z is a Cartesian coordinate 
system whose z-axis is oriented vertically, the equation of the free surface is z = q, and 
the equation of the bottom surface is z = g(x, y). A stationary granulated uniform medium 
occupies the region z < g(x, y). Mass transfer occurs at the interface z = g(x, y). The 
density of solid particles pp is higher than the density of the liquid Pw" 

It is assumed that the main mass of the particles moves in a bottom layer of thickness 
of the order a, much less than the depth h = q - g. The characteristic horizontal since L 
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